The Medical Diagnosis Support System with Intelligent Multiagent Techniques by Performance Differential Difference

نویسندگان

  • Kazuyoshi Nakano
  • Daisuke Yamaguchi
  • Fumiyo Katayama
  • Muneo Takahashi
چکیده

Multiagent technologies enable us to explore their sociological and psychological foundations. A medical diagnostic support system is built using this. Moreover, We think that the data inputted can acquire higher diagnostic accuracy by sorting out using a determination table. In this paper, the recurrence diagnostic system of cancer is built and the output error of Multiagent learning method into the usual Neural Network and a Rough Neural Network and Genetic Programming be compared. The data of the prostatic cancer offered by the medical institution and a renal cancer was used for verification of a system. Inspection data of the renal cancer consist of special data. We think improvement of the precision of a system which using the data from initial value of the network. Keywords—Intelligent Multiagent System, Neural Networks, Medical Diagnostic Support System

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis Prediction of Lichen Planus, Leukoplakia and Oral Squamous Cell Carcinoma by using an Intelligent System Based on Artificial Neural Networks

Introduction: Diagnosis, prediction and control of oral lesions is usually done classically based on clinical signs and histopathologic features. Due to lack of timely diagnosis in all conventional methods or differential diagnosis, biopsy of patient is needed. Therefore, the patient might be irritated. So, an intelligent method for quick and accurate diagnosis would be crucial. Intelligent sys...

متن کامل

Intelligent Diagnosis of Actinic Keratosis and Squamous Cell Carcinoma of the Skin, Using Linear and Nonlinear Features Based on Image Processing Techniques

Introduction: Most skin cancers are treatable in the early stages; thus, an early and rapid diagnosis can be very important to save patients’ lives. Today, with artificial intelligence, early detection of cancer in the initial stages is possible. Method: In this descriptive-analytical study, a computerized diagnostic system based on image processing techniques was presented, which is much more ...

متن کامل

Intelligent Diagnosis of Actinic Keratosis and Squamous Cell Carcinoma of the Skin, Using Linear and Nonlinear Features Based on Image Processing Techniques

Introduction: Most skin cancers are treatable in the early stages; thus, an early and rapid diagnosis can be very important to save patients’ lives. Today, with artificial intelligence, early detection of cancer in the initial stages is possible. Method: In this descriptive-analytical study, a computerized diagnostic system based on image processing techniques was presented, which is much more ...

متن کامل

Design and implementation of an intelligent clinical decision support system for diagnosis and prediction of chronic kidney disease

Introduction: Chronic kidney disease (CKD) is one of the most important public health concerns worldwide. The steady increase in the number of people with End-stage renal disease (ESRD) needing a kidney transplant to survive and incur high costs, highlights early diagnosis and treatment of the disease. This study aimed to design a Clinical Decision Support System (CDSS) for diagnosing CKD and p...

متن کامل

Evaluation of Suspected Pediatric Appendicitis with Alvarado Method Using a Computerized Intelligent Model

Background: Acute appendicitis is one of the common and urgent illnesses among children.  Children usually are unable to help the physicians completely due to weakness in describing the medical history. Moreover, acute appendicitis overlaps with conditions of other diseases in terms of Symptoms and signs in the first hours of presentation. These conditions lead to unwanted biases as well as err...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009